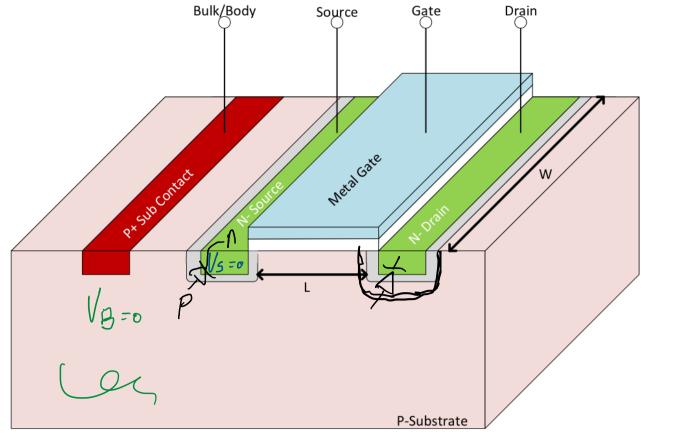


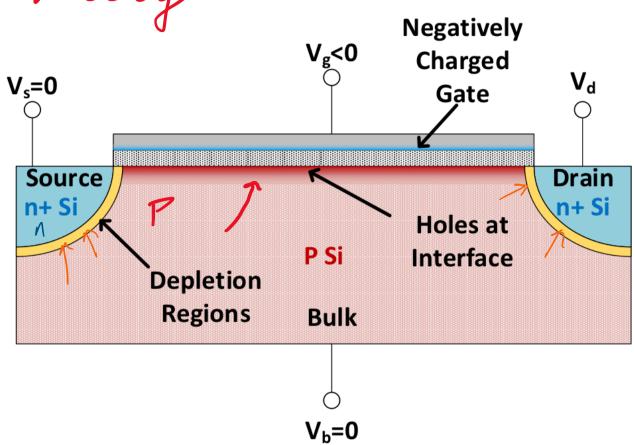
Zero Gale Vallage • Let: $V_G = O$ (or Commonly $V_{GS} = O$)

- Bulk is p-type and Source is n+-type
- $\circ V_{\mathcal{B}} = V_{\mathcal{S}} = \mathcal{O}$ • Depletion Region around source from unbiased P-N Junction
- Bulk is p-type and Drain is n+-type
 - ° VB = 0 , VD > 0
 - Large Depletion region around Drain from reverse Biased P-N Junction
- No Current can flow!
- Channel is either in accumulation or depletion



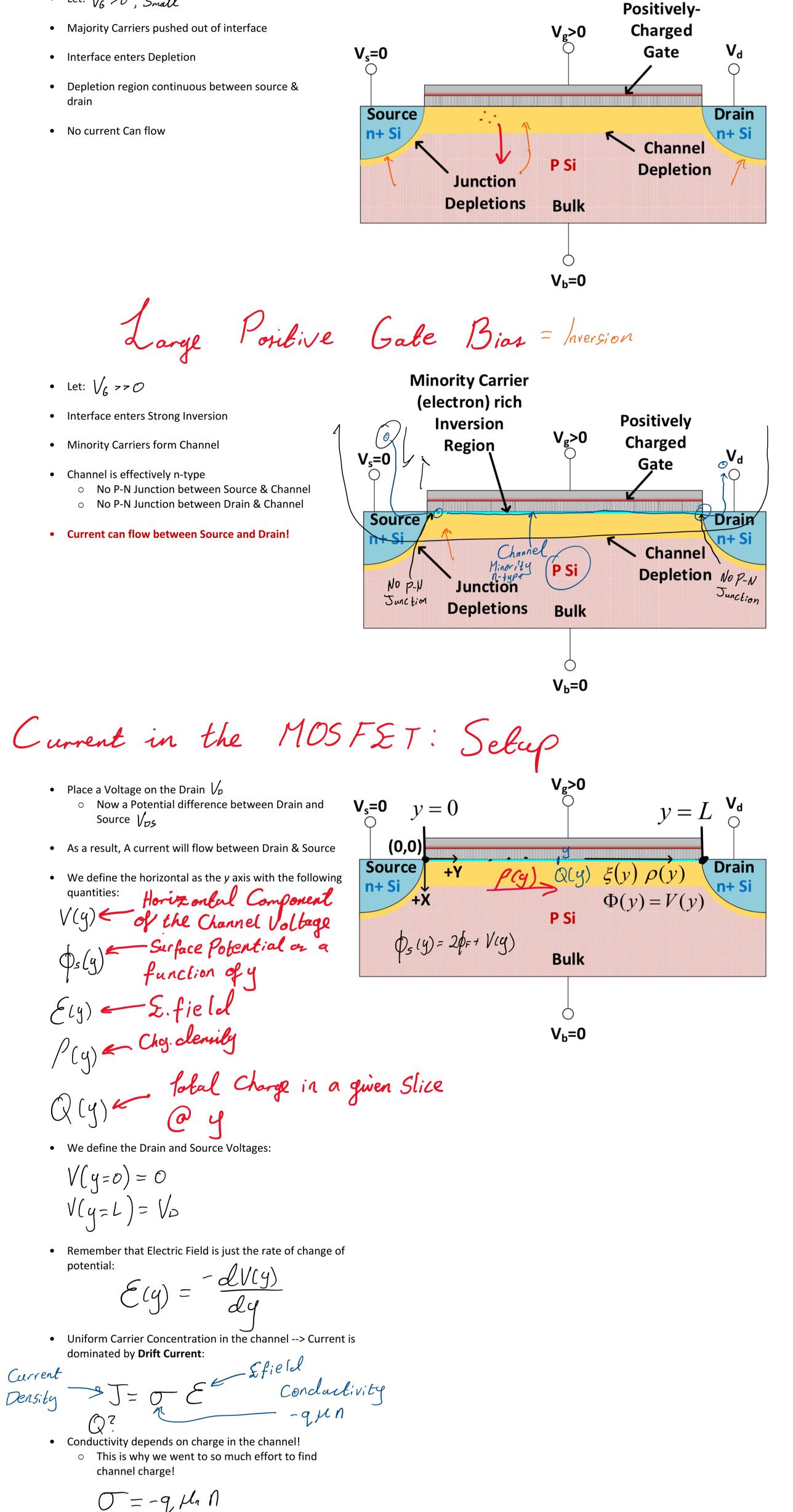
Negative Gale Voltage

- Let: √₆ ⊂ O
- Channel Region enters Accumulation
- Majority Carriers accumulate at the interface
- Depletion Region remains around Drain & Source
- No Current can Flow!



Small Positive Gate Voltage

- Let: $V_G > 0$, Small

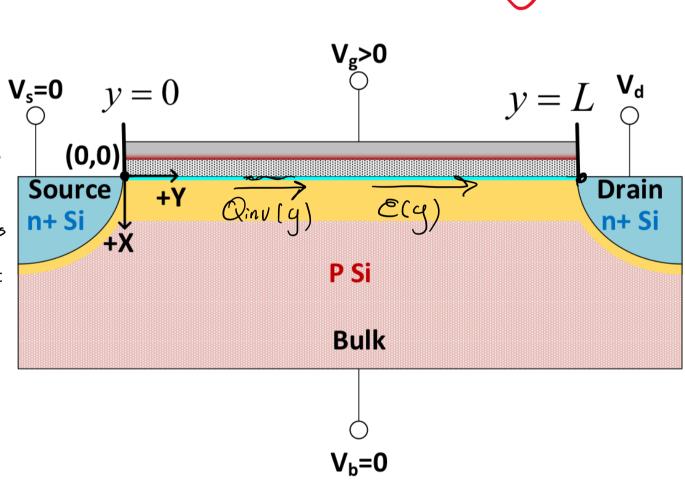


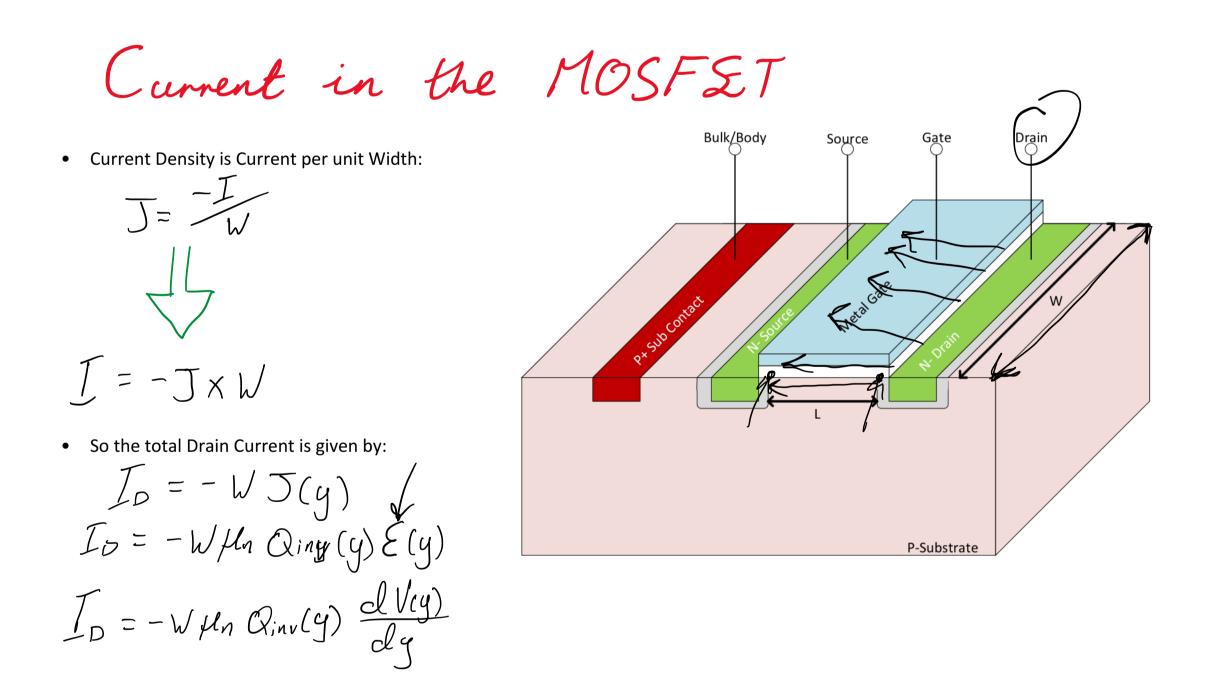
But: Q = -qnSo: T = Q Mn $J = Q \mu_n \mathcal{E}(y)$

Current in the MOSF&T: Current Deniety

• In the Context of the MOSFET, The Current Density is given by:

- J(y) = Qinv(y) Hn E(y) • The Inversion Charge Q_{inv} may not be constant along the channel due to Drain Voltages (shown later)
- The Electric Field $\mathcal{E}(\mathcal{Y})$ is due to Drain-Source Voltage $\mathcal{V}_{\mathcal{P}}$ **n+ Si**
- Once we know Current Density, We can find total current in the MOSFET...





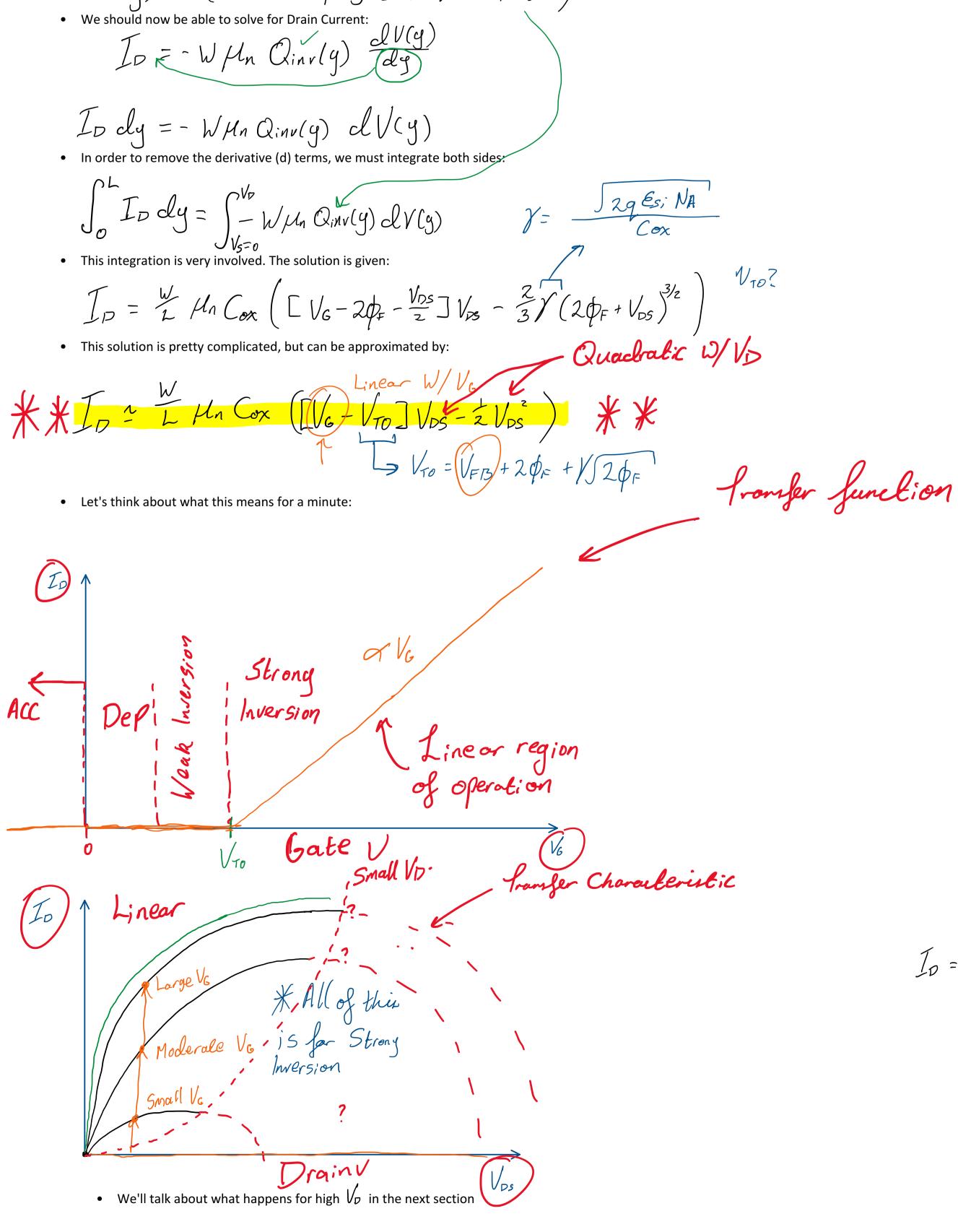
• But what is $Q_{inv}(g)$?

Inversion Charge Along y

• We know total charge at the gate: $Q = -(Q_{dep}(y) + Q_{inv}(y)) \rightarrow Q_{inv} = -Q_{G} - Q_{dep}$ • Depletion Charge is given by Qdep = -JZqEs, NA Øs(q) • Charge Equation gives us total Gate Charge: $Q_G = C_{ox} \left[V_G - \phi_s(q) \right]$ • Substituting these to find Q_{inv} $Q_{inv}(y) = -\left(Cox EV_G - \phi_s(y) \right] - \int 2q \mathcal{E}_{siNA} \phi_s(y)$

 $V_{0x} = \frac{Q_{0x}}{C_{0x}} = \frac{Q_{inv}}{C_{0x}}$

QG = Qox + Qlep $Q_G = Cox \left[V_G - \phi_s(y) \right]$ Q_G = (Qinv + Qdep) Qinv = - QG - Qlep Qinv = - (Cox [VG - \$G(y)] - J2qEsi NA \$G(y))



- This is called the **Linear Region** since drain current is linear with
- The drain current is quadratic with respect to $\sqrt{\rho}$ however.
- We assume that the drain voltage is small, and model the device as a gate-controlled Resistor:

 $\frac{1}{R_{DSon}^{on}} = \frac{dI_{D}}{dV_{D}} = \frac{W}{L} \mu_{n} Cox (EV_{6} - V_{70}] - V_{D}) \stackrel{n}{=} \frac{W}{L} \mu_{n} Cox (V_{6} - V_{70})$

$$\begin{split} I \ I_{0} &= -V/4 \int_{a}^{b} G_{exc}(y_{1} dV(y)) \\ & V_{1} h_{a} \int_{a}^{bb} G_{exc}[V_{0} - (2\phi_{1} + V_{1}y_{1})] = -i2\psi_{0} dv_{1} f_{1} (2\phi_{1} + V_{1}y_{2})] dV(y) \\ &= V_{1} h_{a} \int_{a}^{b} G_{exc}[V_{0} - 2\phi_{1} - V_{1}y_{2}] dV_{0} + \int_{a}^{b} \int$$