MOSFETS Part 6: Accumulation

Monday 16 March 2020 11:55

Accumulation Band View

$$\Delta \mathcal{F}_{FM} = - q V_{G}$$

- - - at the interface
- - Hole conc. Higher
 - 0 the interface
- - carriers

Usually very thin, a few nm

Accumulation Charge

Charge Density as a function of depth given by:

 $\frac{-\mathcal{E}_{s;} \sqrt{2}}{r} \frac{kT}{\rho kT} \frac{-q \rho_s}{\rho kT}$ 9 10 LD * Not Important * La understand where we get it Linking Gate Voltage to Accumulation Charge V_g<0 • We want to link $V_{\mathcal{G}}$ to $Q_{\alpha c c}$ Esioz Cox. • We know: $Q = CV \longrightarrow V = \frac{Q}{C}$ • By KVL: $V_G = \Phi_S + V_{OX}$ $V_{\rm G} = \phi - \frac{Q_{\rm acc}}{C_{\rm ext}}$ P Si **Bulk** • Approximate Parallel Plate Cap since $\mathcal{X}_{acc} \longrightarrow \mathcal{O}$ $C_{ox} = \frac{\varepsilon_{s;o2}}{t_{ox}} \left[F/m^{2} \right]$ $= \left(\begin{array}{c} \varepsilon_{s} \\ -\varepsilon_{s} \\$ **V**_b=0 > Solve for \$5 -> Use \$s to find Clace