MOSFETs Part 7: Depletion

Monday 16 March 2020 17:03

Dep lebion Banel

- Set $V_G > 0$, Small
- Results in Metal Fermi Level Shift of:

 \triangle ** \mathcal{L}_{FM} ** = \triangle *R* V_{G}

- Shifted down so less 'free' electrons in gate
- Causes Si Bands to bend near interface •
	- Bends by an amount $q \phi_5$ \circ
		- **•** Where ϕ is the potential at the interface
- Si Fermi Level Fixed by Doping
- Bent Valence band further from Σ_f •
	- \circ Less free holes for conduction!

 V ien

Dep letion ion

- Band Diagram shows less 'free holes' in the interface region
- Holes are pushed into the bulk ○ Or e pulled into interface region
- Donor atoms \mathcal{N}_A filled with e can't move
- Donor atoms become Negatively charged Ions. These form the depletion charge! •
- Since there is finite doping concentration, the depletion depth must be deep enough to balance charge. •
- The depletion depth is non-negligible

Positively V_{g} >0 (χ_{G}) charged Gate **Channel** P Si **Negatively Depletion** - Q₆ Charged, **Bulk Fixed lons** $V_b = 0$

Potential $p(x)$ & Depletion Thickness and

 P -type

- Bands tell us to expect less free holes
- Let's solve Poisson's Equation:

 $\frac{d^2 \phi(x)}{dx^2} = \frac{-\rho(x)}{\varepsilon_{\mathcal{G}'}} = \frac{-q}{\varepsilon_{\mathcal{G}'}} [\rho(x) - \rho(x)] \sqrt{\frac{q}{\varepsilon_{\mathcal{G}'}}}$

Simplifies to same result as before:

* Don't learn this off *

- $\mathcal{D}(\mathcal{X}^{\bullet})$ is positive this time however ○ Since •
- As a result, the $e^{-\frac{q\phi(x)}{kT}} \rightarrow \mathcal{O}$

 $V_g > 0$ P Si **Bulk** \bigcap $V_b = 0$

• In this case Poisson's Equation can simplify to:

 $d^2\phi(x) \sim \frac{q}{M}$ \mathcal{E}_{5i}

• Thus the charge density $\rho'(\chi)$ is approximately const. @

• Solving Poisson's Differential Equation is easy in this case:

- Where χ is the depletion thickness
- We can solve for Surface Potential $\phi_{\rm s}$ easily

$$
\phi_s = \phi(x=0) = \frac{qN_A}{2E_s}
$$
 $xdt = \int_{0}^{x} \frac{d\dot{u}d}{dx} = \frac{d\dot{u}d}{dx$

• Rearranging for χ_d :

$$
\mathcal{L}_{d} = \sqrt{\frac{2 \mathcal{E}_{si}}{q \mathcal{N}_{4}}} \mathcal{L}
$$

epletion

- We want to know total Depletion Charge $\bigcup_{\ell\in\mathcal{P}}$
- As Before, we integrate $\rho c x$):

 $Q_{\text{dep}} = \int_{x=0}^{x=0} f(x) dx = -\int 2q \xi_{5} N_{A} \phi_{5}$

harge

Linking Depletion Charge to Gate Voltage

• As Before, by KVL:

 $-\rho(x) \approx -q \sqrt{\rho_n}$

This makes intuitive sense: Only charges in depletion region are acceptor ions, which are uniformly distributed •

 $V_g > 0$

Qolep

 $V_6 = \oint_s + V_{ox}$ $C_{ox} = \frac{E_{Sioz}}{L_{ox}}$ $C_{\alpha x} = \frac{C_{\alpha x}}{t_{\alpha x}}$
 $R_{\alpha x} = \frac{F_{\alpha x}}{F_{\alpha x}}$ $\frac{1}{\cdot}$. ϕ_{s} . . $V_{G} = \phi_{s} - \frac{Q_{c}I_{c}}{G_{ex}}$ + Qlep P Si $ZqE_iN_A\phi_s$ **Bulk** </u> Solve for Ps
> Solve for Ps
> Solve for Clap $V_b = 0$ Aside: Depletion Copoitance

- Familiar Expression: $Q = CU$
- Differentiated: $dQ = C dV$

$$
C = \frac{dQ}{dV}
$$

Total Capacitance seen @ Gate:

