MOSFETs Part 8: Inversion

Monday 16 March 2020 22:07

Weak

• Inversion: when the minority carrier concentration becomes the same as the intrinsic carrier concentration:

$$
n = n_i = p
$$

Strong Inversion: when the minority carrier concentration \bullet becomes the same as the majority carrier concentration n = Nacz, Negatively in the bulk:

$$
n = N_A
$$

- Thermally generated e-h pairs no longer recombine in depletion region, but split due to $\oint (x)$ gradient
	- Holes go to bulk
	- \circ Electrons go to interface to form channel!

Surface Potential ϕ_s Req.d for Inversion

Charged,

Fixed lons

Channe (

 $n = n_i \mathcal{O}_\mathcal{U}$

Minority Carrier

(electron) rich

Inversion

Region

 $V_{\rm g}$ >0

P_{Si}

Bulk

 $V_b = 0$

Negatively

charged

Gate

Channel

Depletion

• Remember Free Carrier Concentration Equations:

free hole Core: $P(x) = N_A e^{\frac{-\alpha_0 x}{kT}}$
free e Core: $n(x) = \frac{n_i^2}{N_A} e^{\frac{-\alpha_0 x}{kT}}$

Olectron maan
Jaar $\sqrt{ }$

At the interface:
\n
$$
p(x=0) = N_A e^{\frac{-q\Phi}{kT}}
$$
\n
$$
n(x=0) = \frac{n^2}{N_A} e^{\frac{-q\Phi}{kT}}
$$
\n
$$
W_i : n(x=0) = N_i
$$
\n
$$
S_i : n(x=0) = N_A
$$
\n
$$
M_X = \frac{1}{N_A} \times \frac{1}{N_B}
$$

• As $V_{\mathcal{G}}$ increases: $\mathcal{D}_{\mathcal{G}}$ increases n increases \overline{a} the interface \circ p decreases at the interface

From semiconductor basics we know:

$$
1=\rho=\Lambda_i
$$

when
$$
\mathcal{L}_f = \mathcal{L}_f
$$

- When the Fermi Level equals the intrinsic level!
- Why not bend the bands at the interface so the fermi-level now sits in the middle of the gap? •
- For this, we need the surface potential to equal the fermi potential:

$$
\Delta \Sigma = \left(\Sigma_f - \Sigma_i \right)
$$
\n
$$
q \phi_s = q \phi_{FP}
$$
\n
$$
\phi_s = \phi_r
$$

This is the surface potential required for onset **of weak inversion!** \bullet

• For **Strong Inversion** we require:

$$
\mathsf{MCL}=O\big)=\mathsf{N}_A
$$

- A Fermi Potential $\mathbb{O}_F \varphi$ yields $\varphi = \mathbb{N}$ in the unbent case.
- In order to flip this, and obtain $\eta = \mathcal{N}_4$, our bands must bend so that the Fermi Level \mathcal{L}_f crosses the intrinsic level \mathcal{L}_{i} and then continues the same distance again \bullet
- Thus for Strong Inversion, we require Surface Potential: \bullet

$$
\phi_s = 2 \phi_{FP}
$$

- This is the Surface Potential Required for the Onset **of Strong Inversion!**
- We have moved the bands here and kept the Fermi Level the same.
	- This is equivalent to flipping the Fermi Level about the Intrinsic level by removing the p-type dopant and replacing it with with an equal amount of n-type Thus flipping the Fermi Level

A Proctical Example of Surface Inversion

Plot of Surface Carrier Concentration vs. Surface Potential showing Inversion and Strong In

 10^{25}

 8

Inversion Charge

Let's focus on Strong Inversion o Device is fully 'on' \rightarrow Strong Inversion \bullet

$$
\phi_s = 2 \, \phi_{FP}
$$

- High Concentration of minority carriers (e) forming channel at the interface •
- Similar to Accumulation, the Potential, thus charge is governed by • the Debye Length: \sim

$$
x_{i\alpha\vee} \in \frac{\pi}{\sqrt{2}} \downarrow
$$

- This layer is thus very thin, only nm thick
- This allows us to assume a parallel plate Capacitor similar to \circ **Accumulation Case** Esioz

box

• Total Capacitance Given by:

$$
\frac{1}{2} \times 10^{-4}
$$

• To Relate Surface Potential $\oint_{\mathcal{S}}$ to Inversion Charge, use KVL:

$$
V_{G} = \phi_{s} + V_{0x} = \phi + \frac{Q_{G}}{C_{ox}}
$$

- So then what is $Q_{\mathcal{G}}$?
- We know that minority carrier conc. (Inversion Charge) is given by:

$$
\eta(x) = \frac{n^2}{N_a} e^{\frac{q \varphi(x)}{RT}}
$$

We imagine if we integrate this for inversion charge, we would get a term:

 $Q_{int} \propto e^{\frac{q\psi_{s}}{RT}} \rightarrow \phi_{s} \propto \mathcal{L}_{eq}(Q_{inv})$

• This tells us that our surface potential \mathcal{D}_{ς} will change very little as inversion charge increases. Thus we can approximate in Strong Inversion:

$$
\phi_s \approx 2 \phi_{FP}
$$

 $V_a > 0$ \mathcal{V}_G tox 8 \sqrt{ox} P Si Q_{inv} **Bulk**

Inversion Capacilance

 $n(x=0)$ $p(x=0)$

 $V_b = 0$

Os Stays pretty Const

Changes by a lot

• We know Q_G is the combination of Depletion & Inversion Charge:

$$
Q_6 = Q_{olep} + Q_{inv}
$$

• From before:

Qdep =
$$
\sqrt{2q} \, \epsilon_{si} N_A \, \phi_s
$$

Qdep = $\sqrt{4q} \, \epsilon_{si} N_A \, \phi_{FP}$

• Inversion Charge from Capacitor Equation:

