MOSFETs Part 8: Inversion

Monday 16 March 2020 22:07

Weak

• **Inversion:** when the minority carrier concentration becomes the same as the intrinsic carrier concentration:

$$n = n_i = P$$

Strong Inversion: when the minority carrier concentration ٠ becomes the same as the majority carrier concentration nan in the bulk:

- Thermally generated e-h pairs no longer recombine in depletion region, but split due to $\oint(x)$ gradient
 - Holes go to bulk
 - Electrons go to interface to form channel! 0

Surface Potential &s Reg. of for Inversion

Negatively

charged

Gate

Channel

Depletion

Minority Carrier

(electron) rich

Inversion

Region

Channe(

Ose Negatively

Charged,

Fixed lons

nani@Wi

V_g>0

P Si

Bulk

V_b=0

- Remember Free Carrier Concentration Equations: free hole Core: $P(x) = N_A e^{-\frac{y(x)}{kT}}$ free e Core: $n(x) = \frac{n_i^2}{N_A} e^{-\frac{y(x)}{kT}}$ electron de de
 - At the Interface:

At the Interface:

$$p(x=o) = N_{A} e^{-\frac{q}{b_{A}}}$$

$$n(x=o) = \frac{n!^{2}}{N_{A}} e^{\frac{q}{b_{A}}}$$

$$N(x=o) = n!$$

$$What \phi_{S} is read for WI & ST$$

$$S_{i} : n(x=o) = N_{A}$$

$$Where Band View$$
As V_{e} increases ϕ_{e} increases
 \circ n increases at the interface
 \circ p decreases at the interface

p decreases at the interface Ο

 $-qV_G$

From semiconductor basics we know:

$$l = P = Ni$$

٠

- When the Fermi Level equals the intrinsic level!
- Why not bend the bands at the interface so the ٠ fermi-level now sits in the middle of the gap?
- For this, we need the surface potential to equal the fermi potential:

$$\Delta \Sigma = (\Sigma_f - \Sigma_i)$$

$$q \phi_s = q \phi_F \rho$$

$$\phi_s = \phi_F$$

This is the surface potential required for onset ٠ of weak inversion!

• For **Strong Inversion** we require:

$$N(x=o) = N_{A}$$

- A Fermi Potential ϕ_{FP} yields $\rho = N_A$ in the unbent case.
- In order to flip this, and obtain $\eta = N_A$, our bands • must bend so that the Fermi Level \mathcal{L}_{f} crosses the intrinsic level \mathcal{L}_i and then continues the same distance again
- Thus for Strong Inversion, we require Surface ٠ Potential:

$$\phi_s = 2 \phi_{FP}$$

- This is the Surface Potential Required for the Onset $\Delta E_{FM} = -q V_G$ of Strong Inversion!
- We have moved the bands here and kept the Fermi ٠ Level the same.
 - This is equivalent to flipping the Fermi Level about the Intrinsic level by removing the p-type dopant and replacing it with with an equal amount of n-type Thus flipping the Fermi Level

A Proctical Example of Surface Inversion

Plot of Surface Carrier Concentration vs. Surface Potential showing Inversion and Strong In 10 ²⁵

St

Inversion Charge

• Let's focus on Strong Inversion · Device is fully 'on' -> Strong Inversion

- High Concentration of minority carriers (e) forming channel at the interface
- Similar to Accumulation, the Potential, thus charge is governed by the Debye Length:

- This layer is thus very thin, only nm thick 0
- This allows us to assume a parallel plate Capacitor similar to 0 **Accumulation Case** Esioz

box

• Total Capacitance Given by:

• To Relate Surface Potential ϕ_s to Inversion Charge, use KVL:

$$V_G = \phi_S + V_{OX} = \phi + \frac{Q_G}{C_{OX}}$$

- So then what is Q_{G} ?
- We know that minority carrier conc. (Inversion Charge) is given by:

$$h(x) = \frac{n^2}{N_0} \frac{900x}{e^{RT}}$$

We imagine if we integrate this for inversion charge, we would get a the a term:

• This tells us that our surface potential $\oint_{\mathcal{S}}$ will change very little as inversion charge increases. Thus we can approximate in Strong Inversion:

$$\phi_s \approx 2\phi_{FP}$$

V_g>0 VG tox * Vox P Si Qinv **Bulk**

V_b=0

Inversion Capaintonel

n(x=0) p(x=0)

Changes by a lot ...

Os Stays pretty Const

We know $Q_{\mathcal{G}}$ is the combination of Depletion & Inversion Charge:

From before:

• Inversion Charge from Capacitor Equation:

